

1

Optical Communication System

SFP

ESB5424-3LCD100

2.5Gbps SFP Bi-Directional Transceiver, 100KM Reach Tx1550nm/Rx1490nm

- Up to 2.5Gb/s data links
- > 1550nm DFB laser transmitter and APD photo-detector
- ➢ Up to 100km on 9/125µm SMF
- Hot-pluggable SFP footprint
- > BIDI LC/UPC type pluggable optical interfa
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS-10 compliant and lead-free
- Support Digital Diagnostic Monitoring inter
- Single +3.3V power supply
- Compliant with SFF-8472
- Case operating temperature
 Commercial: 0 ~ +70°C
 Extended: -10 ~ +80°C

Applications

- Switch to Switch Interface
- > Gigabit Ethernet
- Switched Backplane Applications
- Router/Server Interface
- Other Optical Links

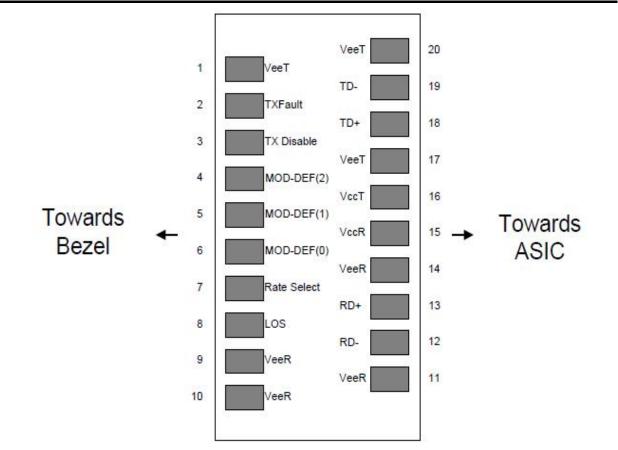
Description

The Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the APD photo-detector .The module data link up to 100km in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.


Parameter	Symbol	Min	Мах	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Power Supply Voltage	Vcc	-0.3	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH₀	0		dBm	

Recommended Operating Conditions and Power

Supply Requirements

Parameter	Symbol	Min	Typical	Мах	Unit	Notes
Operating Case Temperature		0		70	°C	commercial
	T _{OP}	-10		80		extended
		-40		85		industrial
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Data Rate			2.5		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			100	km	9/125um

Pin Assignment and Pin Description

Figure1. Diagram of host board connector block pin numbers and names

PIN	Name	Name/Description	Notes
1	VEET	Transmitter Ground (Common with Receiver Ground)	1
2	TXFAULT	Transmitter Fault.	
3	TXDIS	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	4
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	VEER	Receiver Ground (Common with Transmitter Ground)	1
10	VEER	Receiver Ground (Common with Transmitter Ground)	1
11	VEER	Receiver Ground (Common with Transmitter Ground)	1

3

12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	VEER	Receiver Ground (Common with Transmitter Ground)	1
15	VCCR	Receiver Power Supply	
16	VCCT	Transmitter Power Supply	
17	VEET	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

Notes:

1. Circuit ground is internally isolated from chassis ground.

2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.

3. Should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.

4. This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely

Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > $30k\Omega$ resistor. The input states are:

1) Low (0 – 0.8V): Reduced Bandwidth

2) (>0.8, < 2.0V): Undefined

3) High (2.0 – 3.465V): Full Bandwidth

4) Open: Reduced Bandwidth

5. LOS is open collector output should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

4

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
	Ρ			0.95		commercial
Power Consumption				1.00	W	Industrial
				280	_	commercial
Supply Current	lcc			300	mA	Industrial
	т	ransmitter				
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V	
Differential Input Voltage Swing	Vin,pp	200		2400	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Transmit Disable Assert Time				5	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee-0.3		0.8	V	
		Receiver				
Differential Output Voltage Swing	Vout,pp	500		900	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Data output rise/fall time	Tr/Tf		100		ps	20% to 80%
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	
LOS De-assert Voltage	VlosL	Vee-0.3		0.8	V	

Optical Characteristics

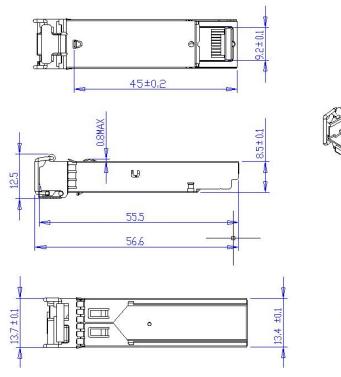
Parameter	Symbol	Min.	Typical	Max	Unit	Notes		
Transmitter								
Center Wavelength	λ _C	1530	1550	1570	nm			
Spectrum Bandwidth(RMS)	σ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Optical Power	P _{AVG}	0		5	dBm	1		
Optical Extinction Ratio	ER	9			dB			
Transmitter OFF Output Power	POff			-45	dBm			
Transmitter Eye Mask	Transmitter Eye Mask Compliant with G.959(class 1 laser safety)							
	R	eceiver						
Center Wavelength	λc	1470	1490	1510	nm			
Receiver Sensitivity (Average Power)	Sen.			-30	dBm	3		
Input Saturation Power (overload)	Psat	-10			dBm			
LOS Assert	LOSA	-41			dB	4		
LOS De-assert	LOSD			-31	dBm	4		
LOS Hysteresis	LOSH	0.5	2	6	dBm			

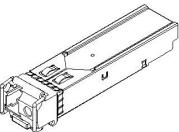
The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Notes:

1. Measure at 2^23-1 NRZ PRBS pattern

2. Measured with Light source 1550nm, ER=9dB; BER =<10^-12 @PRBS=2^23-1 NRZ


3. When LOS de-asserted, the RX data+/- output is High-level (fixed).


Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1 5	0.15	V	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10 %	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

Mechanical Dimensions

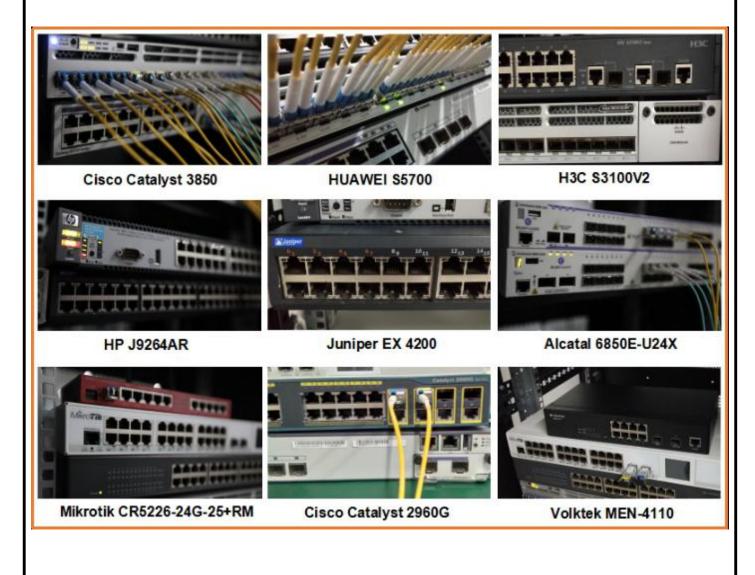
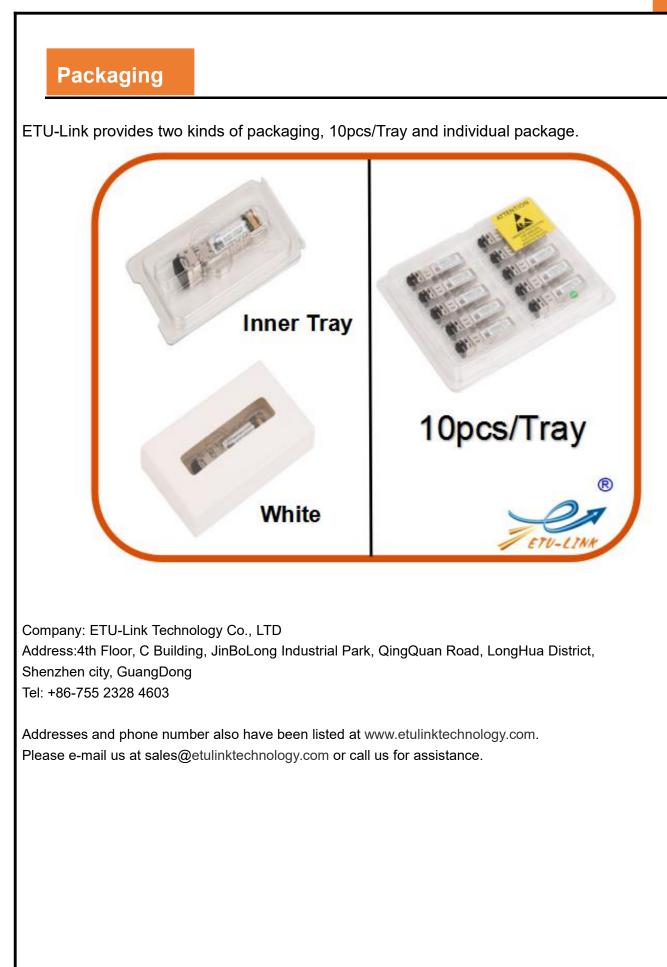

Units in mm

Figure2. Mechanical Outline

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment.Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc



Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved