

Optical Communication System

SFP

ES8524-3LCD05

2.5Gb/s SFP 850nm Multi-Mode Optical Transceiver

- ➤ Up to 2.5Gb/s data links
- > 850nm VCSEL laser transmitter and PIN photo-detector
- > Up to 550m on 50/125um MMF
- Hot-pluggable SFP footprint
- Duplex LC/UPC type pluggable optical interfa
- Low power dissipation
- Metal enclosure, for lower EMI
- > RoHS-10 compliant and lead-free
- Support Digital Diagnostic Monitoring interfac
- ➤ Single +3.3V power supply
- Compliant with SFF-8472
- > Case operating temperature:
- ➤ Commercial: 0 ~ +70°C
- ➤ Extended: -10 ~ +80°C
- ➤ Industrial: -40 ~ +85°C

Applications

- Switch to Switch Interface
- ➤ 1xFiber/2xFiber channel Application
- Gigabit Ethernet
- > Switched Backplane Applications
- > Router/Server Interface
- Other Optical Links

Description

ETU Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the VCSEL laser and the PIN photo-detector .The module data link up to 550m in 50/125um multi-mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(m)	Temperature (oC) (Operating Case)
ES8524-3LCD05	24-3LCD05 2.5 850		550m MMF	0~70 commercial
ES8524-3LED05	2.5	850	550m MMF	-10~80 Extended
ES8524-3LID05	2.5	850	550m MMF	-40~85 Industrial

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	TS	-40	85	οС	
Operating Case Temperature	Tcase	See order In	formation	оС	
Power Supply Voltage	VCC	-0.5	3.6	V	

Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	THd	5		dBm	

Recommended Operating Conditions and Power Supply Requirements

Optical Characteristics	ical	Max	Unit		
Operating Case Temperature	TOP	See order Information			оС
Power Supply Voltage VCC 3.135		3.3	3.465	V	
Data Rate			2.5		Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance(50/125um OM3 Fiber)	D	S	See order Inforr	mation	m

Pin Assignment and Pin Description

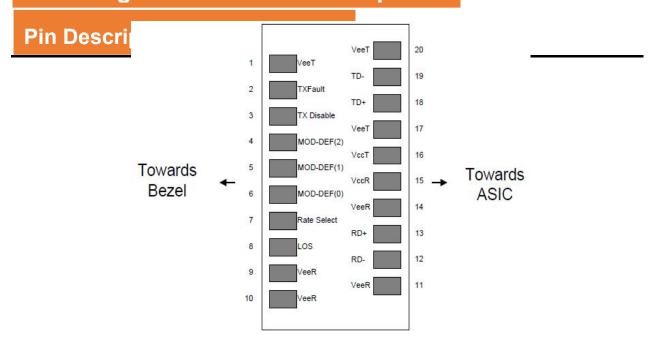


Figure 1. Diagram of host board connector block pin numbers and names

PIN	Name	Name/Description	Notes
1	VEET	Transmitter Ground (Common with Receiver Ground)	1
2	TXFAULT	Transmitter Fault.	
3	TXDIS	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	4
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	VEER	Receiver Ground (Common with Transmitter Ground)	1
10	VEER	Receiver Ground (Common with Transmitter Ground)	1
11	VEER	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	VEER	Receiver Ground (Common with Transmitter Ground)	1
15	VCCR	Receiver Power Supply	
16	VCCT	Transmitter Power Supply	
17	VEET	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3. Should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- 4. This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely

Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > $30k\Omega$ resistor. The input states are:

1) Low (0 - 0.8V): Reduced Bandwidth

2) (>0.8, < 2.0V): Undefined

3) High (2.0 – 3.465V): Full Bandwidth

4) Open: Reduced Bandwidth

5. LOS is open collector output should be pulled up with 4.7k-10k ohms on host board to a voltage between 2.0V and

3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Electrical Characteristics

Electrical Interface Characteristics

The renowing electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes	
D 0 "				0.85		commercial	
Power Consumption	р			0.90	W	Industrial	
Complex Company	laa			250		commercial	
Supply Current	lcc			270	mA	Industrial	
	Transmitter						
Single-ended Input Voltage Tolerance	VCC	-0.3		4.0	V		
Differential Input Voltage Swing	Vin,pp	200		2400	mVpp		
Differential Input Impedance	Zin	90	100	110	Ohm		
Transmit Disable Assert Time				5	us		
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V		
Transmit Enable Voltage	Ven	Vee-0.3		0.8	V		
Receiver							

Differential Output Voltage Swing	Vout,pp	500		900	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Data output rise/fall time	Tr/Tf		100		ps	20% to 80%
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	
LOS De-assert Voltage	VlosL	Vee-0.3		0.8	V	

Optical Characteristics

Pin Definitions								
r arameter	Эуньы	Min.	Typical	Max	Unit	Notes		
Transmitter								
Center Wavelength	λС	830	850	860	nm			
Spectrum Bandwidth(RMS)	σ			0.85	nm			
Average Optical Power	PAVG	-9		-3	dBm	1		
Extinction Ratio	ER	8.2			dB			
Transmitter OFF Output Power	Poff			-45	dBm			
Transmitter Eye Mask Definition		Complian	t with G.957(cl	ass 1 lase	r safety)			
		Receiver						
Center Wavelength	λС	770	850	860	nm			
Sensitivity (Average Power)	Sen.			-18	dBm	2		
Input Saturation Power(overload)	Psat	0			dBm			
LOS Assert	LOSA	-35			dBm	3		
LOS De-assert	LOSD			-19	dBm	3		
LOS Hysteresis	LOSH	0.5			dB			

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Notes:

- 1. Measure at 2^23-1 NRZ PRBS pattern
- 2. Measured with Light source 850nm, ER=8.2dB; BER =<10^-12 @PRBS=2^23-1 NRZ
- 3. When LOS de-asserted, the RX data+/- output is High-level (fixed).

Digital Diagnostic Functions

Digital Diagnostic Functions

defined over the Recommended Operating Environment

unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor	DMI _ Temp	-3	3	degC	Over operating temp
Supply voltage monitor	DMI _VCC	-0.15	0.15	V	Full operating range
RX power monitor	DMI _ RX	-3	3	dB	
Bias current monitor	DMI _ bias	-10%	10%	mA	
TX power monitor	DMI _ TX	-3	3	dB	

Mechanical Specifications

Mechanical Specifications

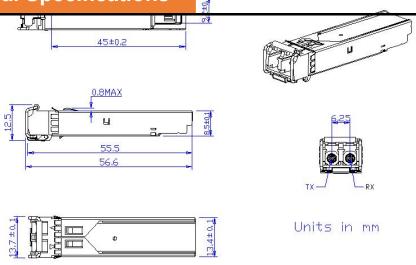


Figure 2. Mechanical Outline

Precautions

a. T Compatibility Test s a result of electrostatic discharge (ESD). A static free environment is

highly recommended. Follow guidelines according to proper ESD procedures.

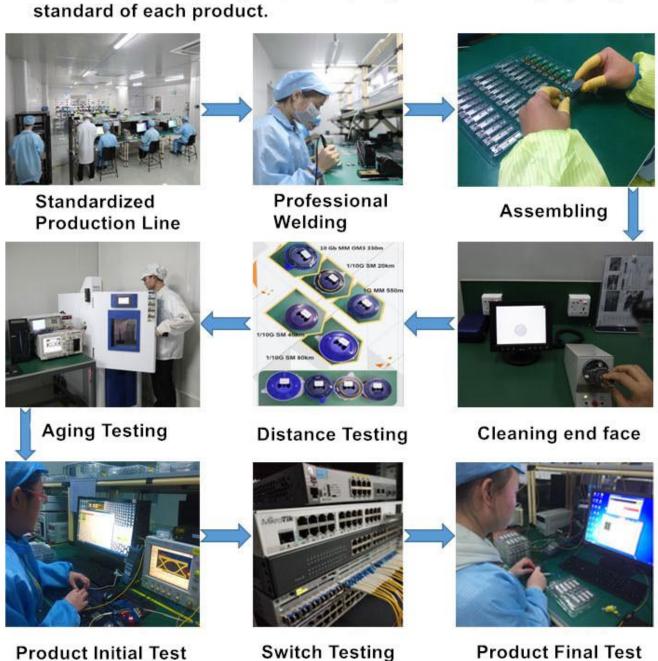
b. Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Compatibility Test

In o Compatibility Test y, our products will be tested on the switch before shipment. Our tream brand switches, such as Cisco, Juniper, Extreme, Brocade,

IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.



Product Production Process

Packaging

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD

Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.